
J. Fluid Mech. (2006), vol. 563, pp. 71–80. c© 2006 Cambridge University Press

doi:10.1017/S0022112006000851 Printed in the United Kingdom

71

The rolling up of sheets in a steady flow
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The mechanism of reconfiguration of broad leaves subjected to wind loading is
investigated. Circular plastic sheets cut along a radius are immersed in a water flow.
They roll up into cones when held at their centres. The opening angle of the cone and
the drag force exerted on the sheet are measured as a function of the flow velocity and
of the sheet bending rigidity. The cone becomes sharper when the velocity increases
or when the sheet stiffness decreases; the reconfiguration leads to a decrease in the
drag coefficient. Scaling laws are derived from the mechanical equilibrium of the
sheets – the balance between form drag and elastic forces – and the experimental
data collapse onto master curves. Two models for the pressure field yield theoretical
curves in semi-quantitative agreement with the experiments.

1. Introduction
To withstand high wind loads without damage, plants have developed different

strategies. For instance, for broad-leaved species such as the tuliptree or red maple,
Vogel (1989) reports the shape reconfiguration of the leaves into cones. This gives
rise to a streamlining of the leaf and a reduction of the surface area exposed to the
wind, and results in a reduction of the drag coefficient with increasing wind speed. A
review of the corresponding biomechanical constraints is given by Niklas (1999). One
might wonder whether physiological processes are involved or the coupling between
the flow and a flexible object suffices to cause reconfiguration. This was one of the
motivations of Alben, Shelley & Zhang (2002, 2004) who performed two-dimensional
experiments on the deformation of a flexible fibre held in a flowing soap film. They
observed the fibre to bend as the velocity of the flow was increased and found the drag
coefficient to vanish at high velocity. They solved the corresponding coupled elastic–
fluid problem and obtained a quantitative agreement with the experiments. However,
as the behaviour of slender elastic objects depends strongly on their dimensionality
(see e.g. Landau & Lifchitz 1990), we aim here to extend the investigations of Alben
et al. (2002, 2004) to a more realistic three-dimensional configuration.

Although fluid–structure interactions have received much attention, most studies
were restricted to small deformations of the elastic structure, often aimed at
characterizing its stability, vibrations or sound emission (Howe 1998). This might
be due to the lack of analytical methods or to the requirement of highly sophisticated
numerical methods (see Etienne & Pelletier 2005, and references therein) in order
to couple large elastic deformations with a flow. Schouveiler, Eloy & Le Gal (2005)
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also investigated experimentally and theoretically the equilibrium shapes of a flexible
filament hanging in a flow, having therefore large deformations. In practice, most
structures are stiff enough not to be deformed by a flow. The notable exception comes
from sailing: the shape of sails in an airflow has been the subject of numerous studies
(for a review, see Lorillu, Weber & Hureau 2002), although the elasticity of the sail
was usually neglected.

The present study concerns the deformation of elastic sheets put into a flow and is
motivated by the observations of Vogel (1989) on tree leaves. The leaf reconfiguration
by flow-induced forces is first experimentally reproduced in the laboratory using
plastic sheets in a water channel. Section 2 reports on these experiments. In § 3 we
formulate the coupled elastic and hydrodynamic problem and we give two models for
the pressure field. Theoretical and experimental results are compared and analysed in
§ 4 before the concluding discussion of § 5.

2. Experiments
We considered a thin circular plastic sheet, of radius R and bending rigidity D, cut

along one radius. It was held in a water flow of velocity U perpendicular to the initial
sheet. Experiments were conducted in a free-surface water channel. The test section
was 140 cm long with a water depth at rest of 45 cm and was slightly diverging to
compensate for the downstream growth of the boundary layers on the tunnel walls.
The width of the section that initially contained the sheet was 38 cm. The free-stream
velocity U could be continuously varied up to 1 m s−1. The sheets were held at their
centre in the channel, at the end of an upstream tube parallel to the flow. The tube
was rigidly attached perpendicularly to a beam that was fixed on a frame above the
free surface.

Eleven sheets were tested: five of radius R = 10 cm and of different bending
rigidities D ranging from 0.27 × 10−3 to 3.03 × 10−3 N m, and seven of bending rigidity
D =0.99 × 10−3 Nm and of radii R ranging from 4 to 10 cm. We used plastic sheets
such as transparencies or plastic covers. For each type of sheet, the rigidity D was
deduced from the measurement of the small deflections due to gravity of a strip
clamped at one end, when varying the strip length.

Without a flow (U = 0) the sheet was flat and perpendicular to the channel section.
When subjected to the flow load, the sheet rolled up into a cone with a circular base.
The ratio of the plastic to the water density being close to 1, the apparent weight
of the sheet was negligible and the cone appeared symmetric around an axis parallel
to the incoming flow. The cone became increasingly acute as the flow speed was
increased. The flow-induced reconfiguration is illustrated in figure 1 for a sheet of
radius R = 10 cm and bending rigidity D = 0.27 × 10−3 Nm at three different values
of U . Photographs were taken using a monochrome video camera, perpendicularly to
the flow, through the glass sidewall of the channel.

The sheet reconfiguration was quantified using the opening angle of the cone α, as
defined in figure 1(a) so that α =0 when the sheet is flat (U = 0). We actually measured
the vertex angle 2ε between the two lines that limit the cone on the visualizations
and deduced α = π/2 − ε. The evolution of α with the flow velocity U is shown in
figure 2 for the eleven sheets tested. As U is increased from 0, α smoothly increases
with a rate that becomes weaker and weaker. Figure 2(a) shows the effect of varying
the bending rigidity D. As expected, the angle α decreases as the bending rigidity D is
increased. For the two most flexible sheets (D =0.27 × 10−3 and 0.59 × 10−3 Nm), α

is not defined for the highest velocities because then the axisymmetry is lost with the
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Figure 1. Visualizations of the sheet reconfiguration into increasingly sharp cones for a
sheet of bending rigidity D =0.27 × 10−3 N m and radius R = 10 cm: (a) U = 8.3 cm s−1,
(b) 17.7 cm s−1, (c) 59.1 cm s−1. Flow from left to right. The cone opening angle α is defined
in (a).
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Figure 2. Bending angle α as a function of the free-stream velocity U: effects of (a) bending
rigidity D for R = 10 cm and (b) of sheet radius R for D = 0.99 × 10−3 N m.

appearance of two folds along the cone. Similarly, figure 2(b) shows the evolution of
α for a given rigidity and different radii R. α appears to be a decreasing function of
R: the reconfiguration is more important for the largest sheets. It should be pointed
out that here U is the free-stream velocity; in fact the flow velocity continuously
increases from the tip along the cone because of the continuous section reduction.

In order to measure the drag force d acting on sheets, the support beam was
attached to a four-strain-gauge calibrated balance (DeltaLab EI 450). Results for
sheets of radius R = 10 cm and of two different bending rigidities are shown in
figure 3 together with data that we obtained for a rigid disk of the same radius and
held perpendicularly to the free stream. For these data, the drag exerted on the sup-
port alone was measured and subtracted from the total drag measured with the sheets.
While for the rigid disk we find the classical quadratic behaviour (shown by the U 2

fit curve in figure 3, which incidentally indicates that the viscous drag is negligible in
this velocity range), the comparison with the data for flexible sheets shows that the
flow-induced reconfiguration allows the leaves to strongly reduce the load they have to
sustain. This optimization is more important as the rigidity becomes smaller due to
the smaller area exposed to the flow.
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Figure 3. Drag force d as a function of the free-stream velocity U for two sheets of radius
R =10 cm, and comparison with the drag on a rigid disk of the same radius.

3. Theory
3.1. Formulation

We consider here the static equilibrium of a circular sheet of bending rigidity D and
of radius R. It is cut along one radius and its centre is fixed in a steady flow of free-
stream velocity U . To express our theoretical model, we use the spherical coordinate
system with origin at the sheet centre and axis of reference given by the direction
of the flow, r being the polar distance, θ the azimuthal angle and φ the polar angle.
In general, a sheet has two modes of deformation: bending – the sheet acquires a
curvature – and stretching – distances on the sheet are changed. First, let us note that,
as the sheet is thin, pure bending deformations are preferred here as they are allowed
by the boundary conditions (see e.g. Rayleigh 1945). So we consider only bending of
the sheet. Furthermore, in agreement with the experimental observations we assume
that the system keeps a symmetry of revolution. Pure bending deformations of a
surface with a symmetry of revolution yield only cylinders and cones. Here the sheet
is held at its centre so that it should have the shape of a cone of opening angle α (as
defined in figure 1a). Let Pα(r) be the differential dynamic pressure field exerted by
the flow on such a cone, i.e. the difference between the pressures on the upward and
leeward sides of the sheet. The energy of the sheet is the sum of its elastic bending
energy due to a curvature c(r) and of the potential energy due to the flow pressure:

E =
1

2
D

∫
S

c2 dS −
∫ α

0

dα′
∫

Sα′

Pα′r dSα′, (3.1)

where the first integral is calculated over all the sheet surface S = πR2 whereas
the second term contains the total pressure torque over the surface exposed to the
incoming flow Sα′ = πR2cos α′. Note that because the ratio of the sheet material density
to the fluid density is close to one and because we consider values of the Reynolds
number Re (Re = UR/ν compares inertia and viscous forces, ν being the kinematical
viscosity of the fluid) as large as 105, any gravity and viscous effects are neglected.
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The local curvature of a cone of opening angle α being given by

c = tan α/r, (3.2)

the first integral in (3.1) appears to be logarithmically divergent as r goes to 0, so
that a cut-off radius Rc is needed. Experimentally this cut-off corresponds to the
size of the holding tube Rc � 1 mm; its precise value is unimportant because the
dependence of E on Rc is only logarithmic. Introducing the non-dimensional pressure
P̃α(r̃) = Pα(Rr̃)/(ρU 2), where ρ is the fluid density, and using the radius of the sheet
R as a unit of length, the total potential energy E (3.1) becomes

E = πD ln

(
R

Rc

)
tan2 α − ρU 2R3

∫ α

0

dα′
∫ r̃=1

r̃=0

P̃α′(r̃)r̃ 2πr̃ cos α′ dr̃ . (3.3)

The ratio between the two energy scales is the elastohydrodynamical number

N =
ρU 2R3

D ln(R/Rc)
=

(
U

Uc

)2

. (3.4)

Then finding the cone equilibrium angle reduces to finding the minimum of the
reduced energy Ẽ(α) = E(α)/(2πD ln(R/Rc)), i.e. the zeros of

∂Ẽ
∂α

=
sinα

cos3 α
− 2N

∫ r̃=1

r̃=0

P̃α(r̃)r̃
2 cos α dr̃ . (3.5)

However the pressure field is still unknown at this stage and is the subject of the
following subsection.

3.2. A model for the pressure field

Alben et al. (2002, 2004) used Helmholtz’s free-streamline theory to compute the
pressure field around their flexible fibre held in a flowing soap film. This method
relies heavily on complex variables which restricts it to two dimensions. Unfortunately,
we are not aware of any analytical or semi-analytical method for three-dimensional
problems. Thus our primary goal is to provide a qualitative understanding of the
experiments.

3.2.1. A potential flow model

Instead of looking for a potential flow with the correct boundary conditions at
infinity and modelling the separation at the edge of the cone, we assume that the
local form of the velocity potential at the tip holds all over the cone, imposing that
the velocity at the edge (r =R, θ = π/2 + α) is equal to the far-field velocity U .

A separable solution to Laplace’s equation is

ψ(r, θ) = ψ0r
nL(n, cos θ), (3.6)

L being a Legendre function of the first kind. The corresponding velocity field is

ur = nψ0r
n−1L(n, cos θ), (3.7)

uθ = ψ0r
n−1(cos θL(n, cos θ) − L(n − 1, cos θ))/ sin θ. (3.8)

The kinematic boundary condition at the cone surface

uθ (r, θ = π/2 + α) = 0 (3.9)

determines the value of the exponent n as a function of α (choosing the smallest
value of n such that there is no divergence of the velocity field). This n(α) yields the
self-similar behaviour of any velocity potential near a cone tip.
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We assume that this form holds even far from the tip and we try to ‘match’ it to
the far-field velocity by imposing that

ur (r = R, θ = π/2 + α) = U, (3.10)

which determines the prefactor ψ0 of the velocity potential. This condition amounts
to stating that the pressure in the wake pw is equal to the far-field pressure p∞ (see
below).

In order to determine the differential pressure Pα exerted on the sheet, we use
Bernouilli’s equation, the pressure on the windward side being pw + Pα ,

pw + Pα(r) + 1
2
ρu2

r = p∞ + 1
2
ρU 2. (3.11)

Again under the assumption that pw = p∞, we obtain the non-dimensional form

P̃α(r̃) = 1
2

(
1 − r̃2n(α)−2

)
, (3.12)

n being determined by the implicit equation (3.9). Note that this assumption on the
leeward pressure amounts to neglecting the recirculation flow behind the cone.

Plugging relation (3.12) into the equilibrium condition given by (3.5) allows the
equilibrium angle α to be calculated according to the potential flow model. Note
that this model is an approximation in the sense that the expansion of the velocity
potential is truncated at its lower power in r .

3.2.2. A momentum conservation model

A simpler expression for the pressure field can be obtained using a momentum flux
balance. If we assume that the drag d on the sheet is generated by the deviation of
a section of area S = πR2 cos2 α (equal to the area of the base of the cone) of the
upward flow (momentum flux ρv2) by an angle α, we find that

d = ρv2(1 − sinα)πR2 cos2 α. (3.13)

If we moreover assume that the pressure field is constant over the cone then we obtain

Pα(r) = ρv2(1 − sinα), (3.14)

or in non-dimensional terms

P̃α(r̃) = 1 − sinα. (3.15)

This formula yields the equilibrium angle α according to the momentum conservation
model.

According to this model, the present system would be equivalent to the problem
of a cone in a free jet, the cross-section of which was arbitrarily chosen as equal to
the cone basis. Also, assuming the pressure field to be constant on the cone is not
very realistic; however the results of both models appear very similar (see below).
This might be ascribed to the fact that the equilibrium angle does not depend on the
details of the pressure field but only on an integral.

4. Results
4.1. Drag on a cone

As a check and to compare with known results on the drag on a cone, we computed
the drag coefficient on a cone as resulting from our two pressure fields:

C =
d

1
2
ρU 2πR2 cos2 α

,
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Figure 4. Drag coefficient C versus cone angle α: experimental data (same symbols as in
figure 3), the linear fit of Hoerner’s data (· · ·) and theoretical curves as deduced from the
potential flow model (—) and from the momentum conservation model (- - -).

where the surface of reference is the base of the cone and the drag force is given by

d =

∫
Sα

Pα(r) cosα dSα. (4.1)

For the potential flow model, we find C =1 − 1/n(α) which decreases from 1/2
for α = 0 to 0 for α = π/2. For the momentum conservation model, C = 2(1 − sinα)
which decreases from 2 for α = 0 to 0 for α = π/2. In the experimental data given
by Hoerner (1993), the drag coefficient decreases from 1.17 (α = 0) to 0.16 (α = π/2).
Figure 4 shows these results, along with the experimental measurements for the drag
coefficient. It should be pointed that the lower values of the angle α (< 0.4) correspond
to a Reynolds number in the range 500–1000, so that they are directly comparable
neither to the two inviscid theories nor to Hoerner’s data (Reynolds number of the
order of 104), because of the contribution of the viscous drag. Except for small angles,
all the curves have the same trends; our measurements are higher than Hoerner’s by
roughly 50 %. However Hoerner warns that his data should be corrected using the
value of the pressure in the wake and our measurements imply the existence of a
more negative dynamic pressure in the wake. The most likely explanation is that the
detachment at the trailing edge of hollow cones (the present study) differs from the
case of the full cones of Hoerner (1993) as this is the main difference between the two
experimental systems.

4.2. The equilibrium angle

In the model presented above, the equilibrium angle α is assumed to result from
a balance between flow pressure on the sheet and sheet rigidity; this leads to a
characteristic velocity scale Uc and to the natural elastohydrodynamical control
parameter N = (U/Uc)

2. In spite of its simplicity, this scaling analysis is confirmed
by our experimental observations: figure 5 shows that the experimental values of
the angle α for the eleven tested sheets collapse on a single curve when they are
plotted with respect to the non-dimensional parameter N. Dispersion appears to be
more important for small N, which might be ascribed to the viscous drag which was
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Figure 5. Angle α versus the non-dimensional elastohydrodynamical number N: experi-
mental data (same symbols as in figure 2) and theoretical curves as deduced from the potential
flow model (—) and from the momentum conservation model (- - -).

neglected in the analysis. The two theoretical curves, deduced from the potential flow
model and from the momentum conservation model, are also plotted in figure 5. They
evolve smoothly from α =0 to the limiting value α = π/2. Although both theories
have a tendency to underestimate the experimental data, the qualitative description
of the evolution of the opening angle is good and quantitatively not very far from
the experimental values. Figure 5 seems to indicate that the momentum conservation
model is more relevant than the potential one. But it should be pointed out that the
data corresponding to this model in figure 5 have been calculated for a jet section
arbitrarily chosen as equal to the cone base. In this sense, this section can be seen as
a adjustment parameter for the experimental data.

4.3. The drag coefficient

As we are interested in the drag reduction through folding, we define the drag
coefficient

Cd =
d

1
2
ρU 2πR2

, (4.2)

using the initial sheet area πR2 as a reference.
We find that

Cd = (1 − 1/n(α)) cos2 α, (4.3)

for the potential flow model and

Cd = 2(1 − sinα) cos2 α (4.4)

for the momentum conservation model.
The drag coefficient evolution with respect to the non-dimensional parameter N

is shown in figure 6. The experimental Cd have been calculated using (4.2) with the
measured drag values d of figure 3; we note that, as for the angle α (see figure 5),
the points for the two tested sheets fall on a single curve when plotted versus N.
Moreover, and in contrast to the rigid disk, for which we have seen in figure 3 that
the drag is proportional to U 2 (that is the drag coefficient is constant), for the flexible
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Figure 6. Drag coefficient Cd (defined with the area of the flat sheet) versus the non-dimen-
sional elastohydrodynamical number N: experimental data (same symbols as in figure 3) and
theoretical curves from the potential flow model (—) and from the momentum conservation
model (- - -).

sheets Cd appears to decay with N. Here also, both theories are seen to qualitatively
describe the evolution of the drag coefficient. The theoretical values deduced from
the potential flow model underestimate the experimental data in the whole N range
investigated and the difference between the data sets is small at high N. Finally
note that the astonishing quantitative agreement of the theoretical values obtained
by the momentum conservation model with the experiments must be ascribed to the
arbitrary choice of the section as adjustement parameter.

4.4. The limit of large elastohydrodynamical number

As the elastohydrodynamical number becomes large (fast flow or very flexible sheet),
the cone becomes sharp and ε = π/2 − α approaches 0. In general, the pressure field
should vanish as well for ε = 0, so that we expect P̃ ∼ εa , with a > 0. In the case of
the two models used here, P̃ ∼ ε2 so that the equilibrium condition and the drag
coefficient definition yield

ε = π/2 − α ∼ N−1/6 and Cd ∼ N−2/3. (4.5)

These scalings account for the slow increase of the equilibrium angle α and the
faster decrease of the drag coefficient Cd with the elastohydrodynamical number
N. However this limit is not reached experimentally: the sheet loses axisymmetry,
probably owing to friction between different layers. The scaling for the drag is the
same in the two-dimensional case (Alben et al. 2002, 2004), although the scaling for
the shape is different (ε ∼ N−1/3).

5. Concluding discussion
When subjected to the load of a fluid flow, a circular sheet cut along a radius

reconfigures into a cone. We have showed that this behaviour, previously observed for
broad leaves in high wind, is mainly due to the mechanical equilibrium of the sheet and
is controlled by the non-dimensional elastohydrodynamical number N (3.4) which
measures the balance between flow pressure and sheet bending rigidity. Comparison
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with the drag on a rigid circular sheet shows that the sheet deformation allows a
substantial drag reduction. A model that couples hydrodynamics and elasticity was
derived. Its main limitation is in the computation of the pressure field. Resorting to
full numerical simulations might be useful to refine the present study. In spite of its
limitations, the model semi-quantitatively accounts for the cone becoming sharper
and for the drag reduction as the fluid velocity is increased.

Returning to the reconfiguration of leaves, our system has two main simplifications.
On the one hand, leaves are stiffened by their veins. However, in tree leaves, the stiffer
(and older) veins often bifurcate from the same point (the end of the petiole), which
allows folding into a cone without deforming these veins. On the other hand, the
geometry of a leave is more akin to that of a sector of disk of opening angle β < 2π
which cannot fold into a cone of angle less than α = cos−1(β/2π), so that we expect a
threshold for reconfiguration. Also, using the values of the bending rigidity D in the
range 5 × 10−5 to 5 × 10−3 N m (Read & Sanson 2003, for thick leaves), an airflow of
velocity U = 10 m s−1 and a size R in the range 5–10 cm, the elastohydrodynamical
number N is found to be in the range 5–500. As a consequence, only some types
of leaves would be subject to reconfiguration above a threshold in wind velocity, in
agreement with observations. To summarize, our results should hold qualitatively for
the reconfiguration of leaves and yield a first step in the full understanding of the
drag reduction in trees.

We thank Benoı̂t Roman, José Bico and Médéric Argentina for suggestions and
discussions. This article has greatly benefited from the input and the corrections of
Emmanuel de Langre to whom we are very grateful.
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